Formation of bis-azomethines from hydrazine and heterocyclic aromatic carbaldehydes, namely pyridine-2-carbaldehyde and pyrazine-2-carbaldehyde, is studied using density functional theory. The theoretical investigation is correlated with experimental results obtained by means of NMR spectroscopy.
The presence of bis-hemiaminal intermediates is evidenced by NMR spectra while surprisingly stable hemiaminal intermediate was isolated experimentally. Water, methanol and acetic acid were outlined to play a crucial role as active catalysts of elementary steps of the reaction mechanisms.
The possible reaction sequences, i.e. addition-dehydration-addition-dehydration or addition-addition-dehydration-dehydration are investigated and discussed. Also, alternative mechanistic path via ionic mechanism was proposed for the formation of hemiaminals.