Charles Explorer logo
🇨🇿

Determinants of interspecific variation in season length of perennial herbs

Publikace na Přírodovědecká fakulta |
2023

Tento text není v aktuálním jazyce dostupný. Zobrazuje se verze "en".Abstrakt

Background and aims

Perennial plants in seasonal climates need to optimize their carbon balance by adjusting their active season length to avoid risks of tissue loss under adverse conditions. As season length is determined by two processes, namely spring growth and senescence, it is likely to vary in response to several potentially contrasting selective forces. Here we aim to disentangle the cascade of ecological determinants of interspecific differences in season length.

Methods

We measured size trajectories in 231 species in a botanical garden. We examined correlations between their spring and autumn size changes and determined how they make up season length. We used structural equation models (SEMs) to determine how niche parameters and species traits combine in their effect on species-specific season length.

Key results

Interspecific differences in season length were mainly controlled by senescence, while spring growth was highly synchronized across species. SEMs showed that niche parameters (light and moisture) had stronger, and often trait-independent, effects compared to species traits. Several niche (light) and trait variables (plant height, clonal spreading) had opposing effects on spring growth and senescence.

Conclusions

The findings indicate different drivers and potential risks in growth and senescence. The strong role of niche-based predictors implies that shifts in season length due to global change are likely to differ among habitats and will not be uniform across the whole flora.