We found an excess (3.7 sigma) in the LST-1 data at energies E > 3 TeV. Further analysis of the whole LST-1 energy range, assuming a point-like source, resulted in a hint (2.2 sigma) of hard emission, which can be described with a single power law with a photon index of Gamma= 1.6 +/- 0.2 the range of 0.3-100 TeV.
We did not find any significant extended emission that could be related to a supernova remnant (SNR) or pulsar wind nebula (PWN) in the XMM-Newton data, which puts strong constraints on possible synchrotron emission of relativistic electrons. We revealed a new potential hard source in Fermi-LAT data with a significance of 4 sigma and a photon index of Gamma = 1.9 +/- 0.2, which is not spatially correlated with LHAASO J2108 +5157, but including it in the source model we were able to improve spectral representation of the HE counterpart 4FGL J2108.0 +5155.